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Abstract The purpose of the present research is to study
the production of thermophilic alkaline protease by a local
isolate, Streptomyces sp. CN902, under solid state fermen-
tation (SSF). Optimum SSF parameters for enzyme
production have been determined. Various locally available
agro-industrial residues have been screened individually or
as mixtures for alkaline protease production in SSF. The
combination of wheat bran (WB) with chopped date stones
(CDS) (5:5) proved to be an eYcient mixture for protease
production as it gave the highest enzyme activity (90.50
U g¡1) when compared to individual WB (74.50 U g¡1) or
CDS (69.50 U g¡1) substrates. This mixed solid substrate
was used for the production of protease from Streptomyces
sp. CN902 under SSF. Maximal protease production
(220.50 U g¡1) was obtained with an initial moisture con-
tent of 60%, an inoculum level of 1 £ 108 (spore g¡1 sub-
strate) when incubated at 45°C for 5 days. Supplementation
of WB and CDS mixtures with yeast extract as a nitrogen
source further increased protease production to 245.50
U g¡1 under SSF. Our data demonstrated the usefulness of
solid-state fermentation in the production of alkaline prote-
ase using WB and CDS mixtures as substrate. Moreover,
this approach oVered signiWcant beneWts due to abundant
agro-industrial substrate availability and cheaper cost.
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Introduction

Proteases are among the most important industrial
enzymes, accounting for nearly 60% of the industrial mar-
ket in the world [1]. Several attempts have been made for
the production of acid, neutral and alkaline proteases [2],
which Wnd potential applications in a number of biotechno-
logical processes [3, 4]. Alkaline proteases are robust
enzymes with considerable industrial potential [5]. These
proteases are used in the detergent industry, leather
processing, silver recovery, medical purposes, food pro-
cessing, feeds and chemical industrial as well as waste
treatment [6, 7]. Microorganisms are the most interesting
source of proteases due to their broad biochemical diversity
and bioengineering potentiality [8]. Microbial proteases
account for approximately 40% of the total worldwide
enzyme sales [9]. Currently, commercial proteases are
mainly fungal [8] and eubacterial products. Streptomyces
species producing protease include S. griseus, S. rimosus
and S. thermovulgaris [10–13]. Protease production has
been studied in submerged (SmF) and solid-state fermenta-
tion (SSF) [14, 15]. In search for cheaper fermentation pro-
cesses with a high enzyme yield, SSF was found to be more
attractive [16], with lower manufacturing costs and energy
requirement. Moreover SSF has gained importance in the
production of microbial antibiotics like cephamycin C [16],
neomycin [17] and enzymes like proteases [18], xylanase
[19], lipase [20] and amylase [21] due to several economic
advantages over conventional SmF [17]. Metabolic
processes of microorganisms are greatly inXuenced by
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temperature, pH, substrate, moisture content, air supply,
inoculum concentration etc. Optimization of medium com-
position has been carried out to maintain a balance between
the various medium components, thus minimizing the
amount of unutilized components at the end of fermenta-
tion. An important factor to be monitored while developing
a production medium is its cost-eVectiveness. This can be
achieved by using cheaply available agro-industrial resi-
dues as unprocessed or moderately processed raw materi-
als. Various substrates for optimal enzyme production have
been tested including feather meal for thermophilic prote-
ase production by Streptomyces sp. 592 [22], wheat bran
for �-amylase by Penicillium chrysogenum [21], red gram
plant waste for �-galactosidase by Aspergillus oryrae [23].
In the present work, Streptomyces sp. CN902 strain, iso-
lated from soil, was analysed for its ability to produce
thermophilic alkaline protease. This strain was tested in
SSF conditions by using abundant and low-cost substrates
for optimal alkaline protease production.

Materials and methods

Microorganisms, maintenance and inoculum preparation

Streptomyces sp. CN902 strain was originally isolated from
Tunisian soil and identiWed as a producer of thermophilic
alkaline protease according to [24]. Streptomyces sp.
CN902 was maintained on YEME medium [25]. For inocu-
lum preparation, Streptomyces sp. CN902 was grown on
nutrient agar slants at 28°C for 7 days until complete sporu-
lation. Ten millilitres of sterile ringer solution was added to
the slant, spores scraped and transferred into a sterile tube
at a density of 1 £ 1012 spores mL¡1 [25].

Submerged culture

Production of protease from Streptomyces sp. CN902 was
carried out in a minimal medium [25] containing (g L¡1):
L-asparagine, 0.5; K2HPO4, 0.5; MgSO4 · 7H2O, 0.2;
FeSO4 · 7H2O, 0.01; glucose (added after autoclaving), 10.
Medium pH was adjusted to 7.0. The broth was inoculated
with 1 £ 106 spores per ml and inoculated with shaking
(Stuart, UK) at 160 rpm and 30°C for 5 days. After fermen-
tation, supernatant was harvested by centrifugation (Sigma
2-16 K, Germany) at 10,000 rpm for 15 min at 4°C. The
supernatant was Wltered and used as crude enzyme extract
to determine alkaline protease activity.

Solid-state fermentation

DiVerent solid substrates such as wheat bran (WB), barley
bran (BB), rice bran (RB), olive spinet (OS), oats bran

(OB), chopped date stones (CDS) and chopped dried Wsh
(CDF) obtained from local market and industrial by-prod-
ucts were tested for their eVects on protease production.
The OS, CDS and CDF were dried at 60°C prior to use and
CDS and CDF were further chopped into smaller frag-
ments. Ten grams of individual substrate was weighed into
a 250-mL Erlenmeyer Xask and moistened at 50% (w/v)
with Tris–HCl buVer (20 mM, pH 7.0). The Xasks were
autoclaved for 20 min at 121°C. After cooling, 1 £ 106

spores g¡1 were added and the contents thoroughly mixed.
Flasks were incubated at 30°C for 5 days. For each experi-
ment, three Xasks were used and withdrawn after the
required time of incubation was attained.

Enzyme extraction

Protease extraction was conducted in Tris–HCl buVer
(20 mM, pH 7.0) at a w/v ratio of 10 after vigorous shaking
at room temperature for 5 min. The extract was centrifuged
at 10,000 rpm at 4°C during 15 min, supernatant was
Wltered on 0.45 �m and used as enzyme source. All experi-
ments were done in triplicate and data expressed as average
values.

Protease activity assay

Protease activity was measured according to its action on
casein [26] with modiWcation on incubation temperature of
55°C instead of 42°C. BrieXy, to 1 mL of 2% (w/v) casein
solution, 1.9 mL of Tris–HCl buVer (100 mM, pH 8.0) and
0.1 mL of enzyme were added and mixture was incubated
at 55°C for 30 min. After incubation, enzyme activity was
stopped by addition of 2 mL of 2% (w/v) trichloroacetic
acid. An enzyme blank was always included. The optical
density of the trichloroacetic acid soluble materials was
read at 280 nm and compared with a tyrosine standard.
One unit of enzyme activity is deWned as the amount of
enzyme required to liberate 1 mg of tyrosine under assay
conditions.

Optimization of solid-state fermentation conditions

Various process parameters inXuencing enzyme production
during SSF were optimized. DiVerent incubation periods
(1–10 days) were studied for their eVect on enzyme produc-
tion. Initial moisture contents (40, 50, 60, 70, 80, 90 and
100%) of solid substrates (before autoclaving) were
adjusted with Tris–HCl buVer (20 mM, pH 7.0). For initial
pH optimization, substrate solutions were adjusted with
20 mM citrate-phosphate, Tris–HCl or glycine-NaOH
buVers at pHs ranging from 3 to 10, respectively. DiVerent
incubation temperatures (20, 25, 30, 35, 40, 45 and 55°C)
were tested for their eVect on enzyme production. DiVerent
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inoculum levels (1 £ 102, 1 £ 104, 1 £ 106, 1 £ 108 and
1 £ 1010 spores g¡1) were also tested on protease activity
production. For each experimental variable all other param-
eters were kept at their optimal level. Data were expressed
as the average of three replicates.

EVect of additional nutrients

The eVect of additional nutrients on protease production
was tested by adding carbon sources (1%, w/w) such as
glucose, fructose, sucrose, maltose, raYnose or starch, and
nitrogen sources (1% w/w) such as peptone, casein, sodium
nitrate, ammonium nitrate or ammonium sulphate. Fermen-
tation was carried out for 5 days and all other parameters
were kept at their optimal level.

Results and discussion

Production of protease in submerged fermentation

Protease activity produced by Streptomyces sp. CN902
under SmF was detected in the culture supernatant from
16 h up to 5 days and the highest level (1.60 U mL¡1) was
found on the second day (data not shown). Enzyme produc-
tion gradually declined beyond the fourth day. Maximum
proteolytic activity was fourfold higher than described for
S. rimosus reported in [11] in which standard medium was
used. It is noteworthy that optimized incubation time for
maximal protease production (7.20 U mL¡1) by Streptomy-
ces sp. 594 was obtained after 4 days [22]. In the case of
Bacillus subtilis Y-108, maximum protease production
(20.20 U mL¡1) was obtained at the third day [27] as it was
the case for Teredinobacter turnirae [5]. The decline in
enzyme production after its optimal level might reXect
depletion of available nutrients.

EVect of agro-industrial wastes on enzyme production 
in solid-state fermentation

Solid-state fermentation processes are highly inXuenced
by the nature of the solid substrate. Generally, substrates
are water insoluble polymers of cellulosic or starch mate-
rial [28]. Several solid substrates obtained from a local
market and industrial by-products have been tested for
protease production. As shown in Table 1, WB and CDS
mixture (5:5) was the most eVective substrate in SSF.
Maximum protease activity production was 90.50 U g¡1

under the following conditions: temperature 30°C, initial
moisture content 50%, pH 7, for 5 days incubation using
1 £ 106 spores g¡1 inoculum level. Several reports
described WB as a potent substrate for protease
production by Bacillus sp. S4, Pseudomonas sp. S22 and

Apergillus oryzae [8, 29]. WB also elicited protease pro-
duction by Aspergillus Xavus [26] as well as Engyodon-
tium album [30]. WB is a rather complete nutrient for
microorganisms [17, 31] and contains approximately 18%
protein, 5% fat and 62% carbohydrate [32]. On the other
hand CDS contains 5–7% protein, 4–10% fat and 12–27%
carbohydrate and signiWcant amount of minerals [33–35].
This substrate which is appropriate in supporting sus-
tained microbial growth and protease production appeared
rather adequate in SSF. To our knowledge CDS has never
been used for protease production in SSF. Date palm
stones of cultivars from Deglet Nour variety (phoenix
dactylifera) constitute an abundant industrial waste by-
product which can be used as an eYcient nutrient for
growth and protease production by Streptomyces sp.
CN902. It is noteworthy that rice bran was previously
found to be a suitable substrate for protease production by
Rhizopus oligosporus [36].

EVect of incubation period

Protease production in SSF was studied over a 10-day
period. It is notable that in other studies, enzyme produc-
tion was studied over an incubation time of 48 h for bacte-
ria and 8–9 days for fungi [29, 37, 38]. Data of alkaline
protease production versus incubation time using a WB and
CDS mixture as substrate are shown in Fig. 1. Protease
activity (6.50 U g¡1) was detected from the second day of

Table 1 EVect of various agro-industrial substrates for thermophilic
alkaline protease production by Streptomyces sp. CN902 in a solid-
state fermentation

The culture was grown at 30°C; initial pH: 7.0; initial moisture: 50%;
inoculum level: 1 £ 106 spores g¡1; incubation period: 5 days

WB wheat bran, BB barley bran, RB rice bran, OB oats bran, CDS
chopped date stones, OS olive spinet, CDF chopped dried Wsh

Substrates Weight (g) Protease 
activity (U g¡1)

WB 10 74.50

BB 10 60.20

RB 10 56.60

OB 10 20.50

CDS 10 69.50

OS 10 10.00

CDF 10 45.50

WB + BB 5 + 5 60.00

WB + RB 5 + 5 63.00

WB + CDS 5 + 5 90.50

WB + OB 5 + 5 62.50

WB + OS 5 + 5 50.50

WB + CDF 5 + 5 64.00
123



534 J Ind Microbiol Biotechnol (2009) 36:531–537
incubation and culminated on day 5 reaching 90.5 U g¡1

and then slightly declined till day 10 reaching 51.50 U g¡1.
Moreover, it was previously reported that maximal protease
activity by Streptomyces sp. 594 was attained after the
fourth day, reaching a signiWcantly lower level of
15.50 U g¡1 [22] whereas in the case of S. rimosus, maxi-
mal protease activity (15.80 U g¡1) was attained on the
ninth day [11]. In the latter case, maximum proteolytic
activity was fourfold lower than found in our present case.
It is remarkable that maximum protease activity production
by Aspergillus Xavus was obtained between the Wfth and
seventh day of incubation using SSF at 30°C [26]. Active
mycelium growth which is closely linked to time incuba-
tion and culture conditions is crucial for high extracellular
enzyme production [21, 39].

EVect of initial moisture content

Moisture content is an important factor in SSF process
eYciency [40, 41]. The eVect of initial moisture content on
protease production is presented in Fig. 2. The highest
enzyme production (121.50 U g¡1) was obtained at 60%
initial moisture content which is twofold higher than
described for Bacillus sp. [28]. A similar observation has
been reported in the case of Streptomyces sp. 594 protease
production [22]. Other reports indicated the requirement of
55 and 63% initial moisture content for maximum protease
production by Penicillium LPB-9 [42] and A. Xavus [26],
respectively, in SSF. Generally, moisture level of the
medium is considered as a fundamental parameter for
microbial growth and metabolite production [43, 44].
Increase in SSF moisture content is believed to reduce the
porosity of solid particles, thus limiting oxygen transfer.
Conversely a decrease in SSF moisture content results in
the reduction of substrate solubility and low degree of
swelling [21, 45–47].

EVect of incubation temperature

The eVect of varying temperatures on enzyme production is
shown in Fig. 3. Maximum protease activity (156.50 U g¡1)
was attained at 45°C. This optimal temperature is similar to
those described for Streptomyces sp. 594 [22] or S. rimosus
[11] which were also grown in SSF but quite diVerent from
Teredinobacter turnirae [5] or Bacillus subtilis PE-11
[28, 48]. In this latter case optimal temperature was around
30°C. Temperature is an essential factor aVecting SSF per-
formance because of its importance in microorganisms’
growth and metabolite production [49, 50]. Overall, our
present data seem to indicate that optimal temperature of
45°C is rather speciWc of Streptomyces whereas 30°C is
rather optimal for Bacillus species.

EVect of initial pH

The eVect of varying initial pH values on enzyme produc-
tion is shown in Fig. 4. When initial pH was equal to 3.0,
no enzyme production was detected. Protease activity
gradually increased with pH reaching an optimum level at

Fig. 1 The eVect of incubation period on thermophilic alkaline prote-
ase production by Streptomyces sp. CN902 in a SSF system for mixture
of WB + CDS (5:5). Initial pH: 7.0; initial moisture: 50%; inoculum
level: 1 £ 106 spores g¡1; incubation temperature: 30°C
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Fig. 2 The eVect of Initial moisture content (%) on thermophilic alka-
line protease production by Streptomyces sp. CN902 in a SSF system for
mixture of WB + CDS (5:5). Initial pH: 7.0; inoculum level: 1 £ 106

spores g¡1; incubation temperature: 30°C; incubation period: 5 days

Fig. 3 The eVect of temperature on thermophilic alkaline protease
production by Streptomyces sp. CN902 in a SSF system for mixture
of WB + CDS (5:5). Initial pH: 7.0; initial moisture: 60%; inoculum
level: 1 £ 106 spores g¡1; incubation period: 5 days
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pH 9.0 (182.50 U g¡1). Thereafter, enzyme production
decreased at all higher pH values reaching 151.30 U g¡1 at
pH 10.0. Data clearly indicated that protease production by
the soil bacterium Streptomyces sp. CN902 under SSF is
optimal at pH 9.0. Previous studies dealing with the eVect
of initial pH on protease production by other Streptomyces
strains as S. rimosus and Streptomyces sp. 594 in SSF con-
ditions indicated lower pH values, i.e., between 6.0 and 7.0
for optimal protease activity [11, 22]. Moreover, pH values
between 7.0 and 9.0 were found to be suitable for optimal
alkaline protease production by T. turnirae, and pH 10.0 in
the case of Bacillus sp. [5, 28]. pH is important for any fer-
mentation process as it may change with various metabolic
activities through its eVect on several components trans-
ferred across the cell membrane [51, 52].

EVect of inoculum level

The inoculum level is also an important factor for alkaline
protease production. Using spores for inoculation oVered
several beneWts when compared to vegetative cells. For
instance they can serve as biocatalyst in bioconversion
reactions because of their ability in carrying out the same
reactions as the corresponding mycelium [51, 53]. As
shown in Fig. 5, optimum enzyme activity (220.50 U g¡1)
was obtained at an inoculum level of 1 £ 108 spores g¡1

substrate. Higher inoculum level did not increase protease
production but rather decreased it reaching 147.30 U g¡1 at
1 £ 1010 spores g¡1 substrate.

EVect of supplementation with nitrogen sources

The eVect of various nitrogen sources (1% w/w) such as
yeast extract, malt extract, peptone, ammonium nitrate,
sodium nitrate, ammonium sulphate and casein on protease

production is shown in Table 2. Each component was
added to WB and CDS mixture in SSF. Ammonium sul-
phate and yeast extract increased protease activity to 233.50
and 245.50 U g¡1, respectively, versus 220.50 U g¡1 for the
control. Malt extract, peptone, ammonium nitrate, sodium
nitrate and casein greatly reduced enzyme production.
Yang et al. [27] also found that protease production by B.
subtilis Y-108 was repressed by most of the nitrogen
sources used with the exception of sodium nitrate which
enhanced protease production. It has also been reported that
casein increased protease production by A. niger var. tieg-
hem when added to WB [54]. Conversely, both casein and
gelatin decreased protease production by A. Xavus [26].

EVect of carbohydrate addition

The eVect of various sugars (1%) on protease activity is
shown in Table 3. All sugars decreased protease production

Fig. 4 The eVect of initial pH on thermophilic alkaline protease pro-
duction by Streptomyces sp. CN902 in a SSF system for mixture of
WB + CDS (5:5). Initial moisture: 60%; inoculum level: 1 £ 106

spores g¡1; incubation period: 5 days; incubation temperature: 45°C

Fig. 5 The eVect of inoculum level on thermophilic alkaline protease
production by Streptomyces sp. CN902 in a SSF system for mixture of
WB + CDS (5:5). Initial moisture: 60%; initial pH: 9.0; incubation
period: 5 days; incubation temperature: 45°C

Table 2 EVect of various nitrogen sources on thermophilic alkaline
protease production by Streptomyces sp. CN902 in a solid-state
fermentation

The culture was grown at 45°C; initial pH: 9.0; initial moisture of
mixture of WB + CDS: 60%; inoculum level: 1 £ 108 spores g¡1;
incubation period: 5 days

Organic nitrogen
sources

% Protease 
activity (U g¡1)

Control Nil 220.50

Yeast extract 1 245.50

Malt extract 1 193.20

Peptone 1 189.70

Ammonium nitrate 1 178.50

Sodium nitrate 1 172.60

Ammonium sulphate 1 233.50

Casein 1 170.60
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and the lowest activity (161.20 U g¡1) was obtained with
maltose and the highest activity (199.50 U g¡1) with
fructose. This decrease may be attributed to the repres-
sion exerted by excessive amount of metabolizable sug-
ars on protease production [5]. Another study reported
that protease production by B. subtilis Y-108 was
slightly enhanced by addition of 1% lactose or arabinose
in SSF [24]. Moreover, sucrose and mannitol have a
strong eVect on protease production by E. album [27].
Overall, our data seem to indicate that the addition of
any carbon source to WB and CDS mixture lead to the
reduction in alkaline protease production by Streptomy-
ces sp. CN902.

Conclusion

Production of a thermophilic alkaline protease by
Streptomyces sp. CN902 strain under solid-state fermen-
tation is inXuenced by the growth conditions of the
bacteria in WB and CDS mixture. This mixture is an
eYcient substrate for optimal enzyme production in
SSF. The use of waste raw materials is cheaper and more
advantageous than conventional substrates for thermo-
philic alkaline protease production. Furthermore, a high
enzyme level was reached by supplementation with
yeast extract. These results open the way to the use of
other substrate mixtures for optimal production of alkaline
protease or other industrial enzymes by Streptomyces sp.
CN902.
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